DataFrame.fillNa

Fill NaN/undefined values using the specified method. Detect missing values for an array-like object.

danfo.DataFrame.fillNa(values, options) [source]

Parameters
Type
Description
Default

values

Array | Scalar

The list of value(s) to use for replacement.

options

Object

{columns:Array of column name(s) to fill. If undefined fill all columns

inplace: Boolean indicating whether to perform the operation inplace or not. Defaults to false

}

{inplace: false}

Examples

Fill missing values in specified columns with specified values

Missing values are NaN, undefined or null values

const dfd = require("danfojs-node")

let data = {
    "Name": ["Apples", "Mango", "Banana", undefined],
    "Count": [NaN, 5, NaN, 10],
    "Price": [200, 300, 40, 250]
}

let df = new dfd.DataFrame(data)
df.print()

let values = ["Apples", df["Count"].mean()]
let df_filled = df.fillNa(values, { columns: ["Name", "Count"] })
df_filled.print()
╔════════════╀═══════════════════╀═══════════════════╀═══════════════════╗
β•‘            β”‚ Name              β”‚ Count             β”‚ Price             β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 0          β”‚ Apples            β”‚ NaN               β”‚ 200               β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 1          β”‚ Mango             β”‚ 5                 β”‚ 300               β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 2          β”‚ Banana            β”‚ NaN               β”‚ 40                β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 3          β”‚ undefined         β”‚ 10                β”‚ 250               β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

╔════════════╀═══════════════════╀═══════════════════╀═══════════════════╗
β•‘            β”‚ Name              β”‚ Count             β”‚ Price             β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 0          β”‚ Apples            β”‚ 7.5               β”‚ 200               β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 1          β”‚ Mango             β”‚ 5                 β”‚ 300               β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 2          β”‚ Banana            β”‚ 7.5               β”‚ 40                β•‘
β•Ÿβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 3          β”‚ Apples            β”‚ 10                β”‚ 250               β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

Fill all columns with NaNs with a specified value

const dfd = require("danfojs-node")

let data = {
    "Name": ["Apples", "Mango", "Banana", undefined],
    "Count": [NaN, 5, NaN, 10],
    "Price": [200, 300, 40, 250]
}

let df = new dfd.DataFrame(data)
let df_filled = df.fillNa("Apples")

df_filled.print()
╔═══╀═══════════════════╀═══════════════════╀═══════════════════╗
β•‘   β”‚ Name              β”‚ Count             β”‚ Price             β•‘
β•Ÿβ”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 0 β”‚ Apples            β”‚ Apples            β”‚ 200               β•‘
β•Ÿβ”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 1 β”‚ Mango             β”‚ 5                 β”‚ 300               β•‘
β•Ÿβ”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 2 β”‚ Banana            β”‚ Apples            β”‚ 40                β•‘
β•Ÿβ”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 3 β”‚ Apples            β”‚ 10                β”‚ 250               β•‘
β•šβ•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

Fill NaNs inplace

const dfd = require("danfojs-node")
let data = {
    "Name": ["Apples", "Mango", "Banana", undefined],
    "Count": [NaN, 5, NaN, 10],
    "Price": [200, 300, 40, 250]
}

let df = new dfd.DataFrame(data)
let values = ["Apples", df["Count"].mean()]
df.fillNa(values, {
    columns: ["Name", "Count"],
    inplace: true
})
df.print()
╔═══╀═══════════════════╀═══════════════════╀═══════════════════╗
β•‘   β”‚ Name              β”‚ Count             β”‚ Price             β•‘
β•Ÿβ”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 0 β”‚ Apples            β”‚ Apples            β”‚ 200               β•‘
β•Ÿβ”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 1 β”‚ Mango             β”‚ 5                 β”‚ 300               β•‘
β•Ÿβ”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 2 β”‚ Banana            β”‚ Apples            β”‚ 40                β•‘
β•Ÿβ”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β•’
β•‘ 3 β”‚ Apples            β”‚ 10                β”‚ 250               β•‘
β•šβ•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•§β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•

Last updated

Was this helpful?