DataFrame.iloc

Purely integer-location based indexing for selection by position.

danfo.DataFrame.iloc(args)

ParametersTypeDescriptionDefault

args

Object

{

rows: Array, index of row position

columns: Array, index of position along columns

}

Examples

.iloc() is primarily integer position based (from 0 to length-1 of the axis).

Allowed inputs are:

  • An integer, e.g. 5.

  • A list or array of integers, e.g. [4, 3, 0].

  • A string slice object with ints, e.g. "1:7"

  • A boolean array.

Note: only the start index is included.

.iloc will raiseIndexError if a requested indexer is out-of-bounds.

Indexing specific rows by index and return all columns

If the row's index is specified and the columns are not, then it returns all columns and just the specified rows.

const dfd = require("danfojs-node")

let data = { "Name": ["Apples", "Mango", "Banana", "Pear"],
            "Count": [21, 5, 30, 10],
            "Price": [200, 300, 40, 250] }

let df = new dfd.DataFrame(data)
let sub_df = df.iloc({rows: [0,1,3]})
sub_df.print()
╔═══╤═══════════════════╤═══════════════════╤═══════════════════╗
║   │ Name              │ Count             │ Price             ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 0 │ Apples            │ 21                │ 200               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 1 │ Mango             │ 5                 │ 300               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 3 │ Pear              │ 10                │ 250               ║
╚═══╧═══════════════════╧═══════════════════╧═══════════════════╝

Index by a slice of row and return all columns

The iloc function also accepts string slices of the form [start: end], e.g "[1: 3]". This will return all values between index position 1 and 3. The end index is not included.

const dfd = require("danfojs-node")

let data = { "Name": ["Apples", "Mango", "Banana", "Pear"],
            "Count": [21, 5, 30, 10],
            "Price": [200, 300, 40, 250] }

let df = new dfd.DataFrame(data)
let sub_df = df.iloc({rows: ["1:3"]})
sub_df.print()
╔═══╤═══════════════════╤═══════════════════╤═══════════════════╗
║   │ Name              │ Count             │ Price             ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 1 │ Mango             │ 5                 │ 300               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 2 │ Banana            │ 30                │ 40                ║
╚═══╧═══════════════════╧═══════════════════╧═══════════════════╝

Index by a slice of column and return all rows

const dfd = require("danfojs-node")

let data = { "Name": ["Apples", "Mango", "Banana", "Pear"],
            "Count": [21, 5, 30, 10],
            "Price": [200, 300, 40, 250] }

let df = new dfd.DataFrame(data)
df.print()

let sub_df = df.iloc({columns: ["1:"]})
sub_df.print()
╔═══╤═══════════════════╤═══════════════════╤═══════════════════╗
║   │ Name              │ Count             │ Price             ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 0 │ Apples            │ 21                │ 200               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 1 │ Mango             │ 5                 │ 300               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 2 │ Banana            │ 30                │ 40                ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 3 │ Pear              │ 10                │ 250               ║
╚═══╧═══════════════════╧═══════════════════╧═══════════════════╝


 Shape: (4,2) 

╔═══╤═══════════════════╤═══════════════════╗
║   │ Count             │ Price             ║
╟───┼───────────────────┼───────────────────╢
║ 0 │ 21                │ 200               ║
╟───┼───────────────────┼───────────────────╢
║ 1 │ 5                 │ 300               ║
╟───┼───────────────────┼───────────────────╢
║ 2 │ 30                │ 40                ║
╟───┼───────────────────┼───────────────────╢
║ 3 │ 10                │ 250               ║
╚═══╧═══════════════════╧═══════════════════╝

Indexing both axis by the specified index

const dfd = require("danfojs-node")

let data = { "Name": ["Apples", "Mango", "Banana", "Pear"],
            "Count": [21, 5, 30, 10],
            "Price": [200, 300, 40, 250] }

let df = new dfd.DataFrame(data)
let sub_df = df.iloc({rows: [0,3], columns: [1,2]})
sub_df.print()
╔═══╤═══════════════════╤═══════════════════╤═══════════════════╗
║   │ Name              │ Count             │ Price             ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 0 │ Apples            │ 21                │ 200               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 1 │ Mango             │ 5                 │ 300               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 2 │ Banana            │ 30                │ 40                ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 3 │ Pear              │ 10                │ 250               ║
╚═══╧═══════════════════╧═══════════════════╧═══════════════════╝


 //after indexing

╔═══╤═══════════════════╤═══════════════════╗
║   │ Count             │ Price             ║
╟───┼───────────────────┼───────────────────╢
║ 0 │ 21                │ 200               ║
╟───┼───────────────────┼───────────────────╢
║ 3 │ 10                │ 250               ║
╚═══╧═══════════════════╧═══════════════════╝

Indexing both axis by slices

const dfd = require("danfojs-node")

let data = { "Name": ["Apples", "Mango", "Banana", "Pear"],
            "Count": [21, 5, 30, 10],
            "Price": [200, 300, 40, 250] }

let df = new dfd.DataFrame(data)
df.print()

let sub_df = df.iloc({rows: ["2:3"], columns: ["1:2"]})
sub_df.print()
╔═══╤═══════════════════╤═══════════════════╤═══════════════════╗
║   │ Name              │ Count             │ Price             ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 0 │ Apples            │ 21                │ 200               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 1 │ Mango             │ 5                 │ 300               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 2 │ Banana            │ 30                │ 40                ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 3 │ Pear              │ 10                │ 250               ║
╚═══╧═══════════════════╧═══════════════════╧═══════════════════╝


╔═══╤═══════════════════╗
║   │ Count             ║
╟───┼───────────────────╢
║ 2 │ 30                ║
╚═══╧═══════════════════╝

More default slicing behavior

If you specify a slice start position, iloc automatically returns all values after that position. For instance:

const dfd = require("danfojs-node")

let data = { "Name": ["Apples", "Mango", "Banana", "Pear"],
            "Count": [21, 5, 30, 10],
            "Price": [200, 300, 40, 250] }

let df = new dfd.DataFrame(data)
df.print()

let sub_df = df.iloc({rows: ["2:"], columns: ["1:"]})
sub_df.print()
╔═══╤═══════════════════╤═══════════════════╤═══════════════════╗
║   │ Name              │ Count             │ Price             ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 0 │ Apples            │ 21                │ 200               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 1 │ Mango             │ 5                 │ 300               ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 2 │ Banana            │ 30                │ 40                ║
╟───┼───────────────────┼───────────────────┼───────────────────╢
║ 3 │ Pear              │ 10                │ 250               ║
╚═══╧═══════════════════╧═══════════════════╧═══════════════════╝


 Shape: (2,2) 

╔═══╤═══════════════════╤═══════════════════╗
║   │ Count             │ Price             ║
╟───┼───────────────────┼───────────────────╢
║ 2 │ 30                │ 40                ║
╟───┼───────────────────┼───────────────────╢
║ 3 │ 10                │ 250               ║
╚═══╧═══════════════════╧═══════════════════╝

Last updated